

TMI8261 18V 4.5A Brushed DC Motor Driver

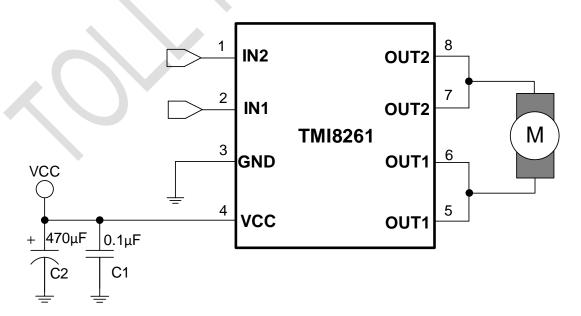
FEATURES

- H-Bridge Motor Driver
 Drives One DC Motor, One Winding of a Stepper Motor, or Other Loads
- Wide 3.0V to 18V Operating Voltage
- . Low Standby Current: <1µA
- . Maximum Output Continuous Current 4.5A
- . Ultra Low Rds(on): $63\sim65 \text{ m}\Omega$
- . VM Undervoltage Lockout (UVLO)
- . Overcurrent Protection (OCP)
- . Thermal Shutdown (TSD)
- . Integrated Fast Stop Function
- . Small Package and Footprint: SOP8

APPLICATIONS

- . Electronic locks
- . Electric toys
- Massager
- . Robots

GENERAL DESCRIPTION


The TMI8261 is a DC bidirectional motor drive integrated chip, suitable for medium and large current, medium and high torque motors.

There are two logic input terminals, used to control the motor forward, backward and brake, PWM mode control mode.

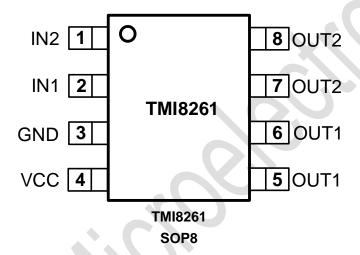
This circuit has good anti-interference, tiny standby current, ultra-low output internal resistance, using BCD process, strong withstand voltage, and strong reverse surge current capability to release inductive load.

The package form of TMI8261 is SOP8, and is completely with ROHS specifications, and the lead frame is 100% lead-free.

TYPICAL APPILCATION

Figure 1. Basic Application Circuit

www.toll-semi.com


TMI8261 V1.4 2021.02

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Value	Unit	
Power supply voltage (VCC)	-0.3~20	V	
Logic input voltage (IN2, IN1)	-0.3~VCC	V	
Output continuous current (I _{OUT}) (SOP8)	0~4.5	А	
Operating temperature (T _{OP})	-25~85	°C	
Power consumption (P _D)	2	W	
Operating junction temperature (Note 2)	Operating junction temperature (Note 2) -40~150		
Storage temperature	-55~150	°C	

PACKAGE/ORDER INFORMATION

Part Number	Package	Top mark	Quantity/ Reel
TMI8261	SOP8	TMI8261	3000
110110201	3010	XXXXX	3000

TMI8261 device is Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin	Name	I/O	Description			
1	IN2	Input	Backwards logic control.			
2	IN1	Input	Forwards logic control.			
3	GND	Ground	Logic ground.			
4	VCC	Power	Power supply.			
5/6	OUT1	Output	Forwards output.			
7/8	OUT2	Output	Backwards output.			

ESD RATING

Items	Description	Value	Unit
V_{ESD}	Human body model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Units
Power supply voltage range	VCC	3	18	V
Logic input voltage range	V _{IN_X}	-0.3	20	V
Output continuous current (Forward)	I _{OUT_X}	0	4.5	Α
Output continuous current (Reverse)	Іоит_х	0	4.5	Α
Logic input frequency	F _{IN_X}	0	50	kHz

ELECTRICAL CHARACTERISTICS

(T_A = 25°C, over recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Power supply (VCC)						
Operation voltage	Voperation		3.0		18	V
Shutdown current	Iccst	VCC=12V, IN1=IN2=0V, no load			1	μA
Standby current	Icc	VCC=12V, IN1=IN2=5V or IN1=5V &	0.3	0.6	1	mA
PWM current	I _{CCPWM1}	VCC=12V, IN1=5V, IN2=50kHz, no	1	1.8	3	mA
Undervoltage lockout	UVLO	VCC rising	1.9	2.2	2.8	V
Logic inputs						
Input logic high	V_{INH}		2.2		6	V
Input logic low voltage V _{INL}					0.7	V
Input logic high	I _{INH}	VCC = 12V, VIN = 5V		110	200	μΑ
Input logic low current	I _{INL}	VCC = 12V, VIN= 0V			1	μΑ
H-bridge FETs				9		
FETs on resistance	$R_{ds(on)}$	I _{LOAD} =1A, HS+LS		63		mΩ
FETs on resistance	$R_{ds(on)}$	I _{LOAD} =3A, HS+LS		65		mΩ
Over temperature prot	ection					
Thermal shutdown	T _{OTP}			150		°C
Thermal shutdown TSD _R 120			°C			
Over current protecti	on					
OCP trip current	I _{OCP}			12		Α

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \times \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D \text{ (MAX)}} = (T_{J \text{(MAX)}} - T_A)/\theta_{JA}$.

Note 3: Thermal shutdown threshold and hysteresis are guaranteed by design.

OPERATION

Bridge Control

The TMI8261 output consists of four N-channel MOSFETs that are designed to drive high current. These outputs are controlled by the two logic inputs IN1 and IN2 as listed in Table 1.

			Table 1.	II Briage control
IN1	IN2	OUT1	OUT2	DESCRIPTION
L	L	High-Z	High-Z	Coast; H-bridge disabled to High-Z
L	Н	L	Н	Reverse (Current OUT2 →OUT1)
Н	L	Н	L	Forward (Current OUT1 →OUT2)
Н	Н	L	L	Brake; low-side slow decay

Table 1. H-Bridge Control

Output Timing Diagram

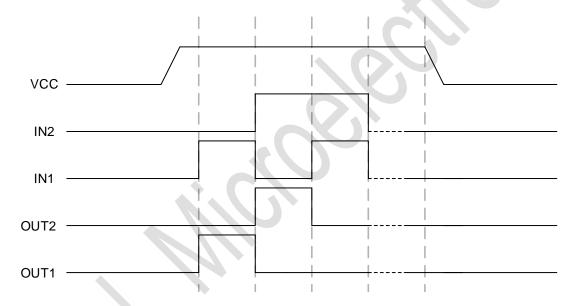


Figure 2. TMI8261 Output Timing Diagram

Application Directions

The peripheral components on the typical application circuit as shown in Figure 1 are described as follows:

C1 and C2 are VCC input capacitors, the main functions are as follows:

- 1. Absorb the energy released by the motor to the power supply, stabilize the VCC power supply voltage, prevent the IC from being directly broken down due to the high surge voltage, and have the function of filtering ripple and interference noise.
- 2. At the moment when the motor starts, it can release current to help the motor start quickly.
- 3. The selection of the VCC input capacitor C2 needs to be based on the voltage stability of the VCC and the motor load current. If the VCC voltage wave is large or the motor load current is large, a larger capacitor value must be selected.
- 4. C1 and C2 capacitors need to be as close to VCC as possible on the PCB configuration.

www.toll-semi.com

TMI8261 V1.4 2021.02 5

Work Mode Directions

Basic working mode:

- 1. Forward mode, defined as: IN2=L, IN1=H, then OUT2=L, OUT1=H;
- 2. Backward mode, defined as: IN2=H, IN1=L, then OUT2=H, OUT1=L;
- 3. Brake mode, defined as: IN2=H, IN1=H, then OUT2=L, OUT1=L;
- 4. Coast mode, defined as: IN2=L, IN1=L, at this time OUT2=Open, OUT1=Open.

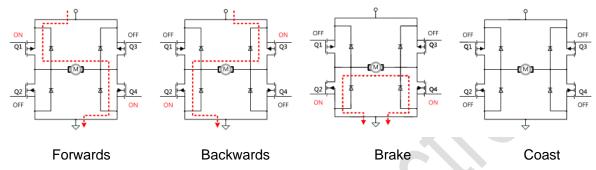


Figure 3. TMI8261 Work Modes

Thermal Shutdown (TSD) and Over Current Protection (OCP)

When using TMI8261, when the IC temperature exceeds 150°C (typical value), the overheating protection circuit of the built-in IC will forcibly turn off part of the driving MOS transistors to ensure the safety of customer products.

When the temperature of the IC drops to 120°C (typical), the IC will automatically resume to work quickly.

If the current flowing through the motor is greater than the internal overcurrent protection threshold, the internal integrated overcurrent protection circuit will turn off the MOS transistor and the IC stops working. After the motor current is lower than the internal overcurrent protection threshold, the IC works normally.

Block Diagram

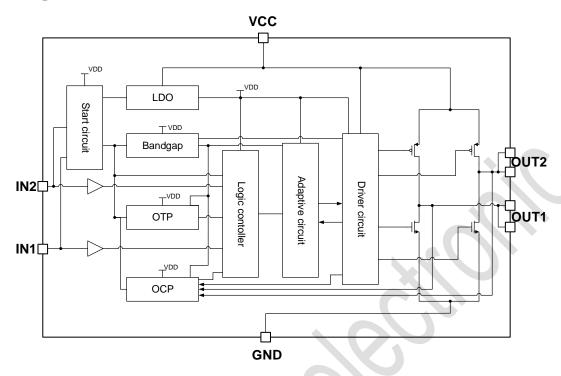
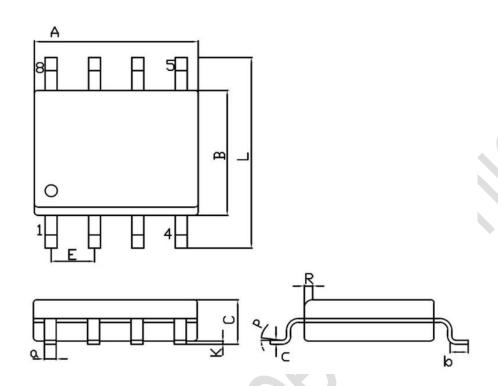



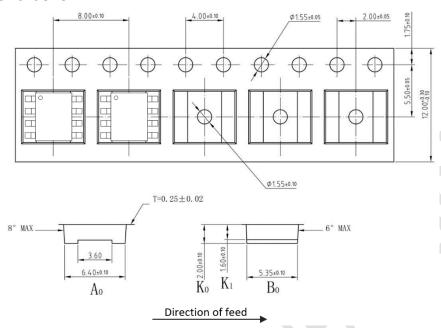
Figure 4. TMI8261 Block Diagram

PACKAGE INFORMATION

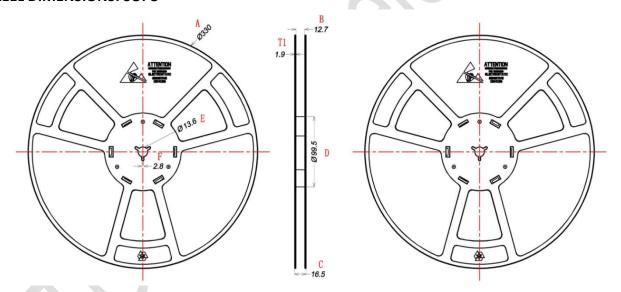
SOP8

Unit: mm

Symbol	Dimensions In Millimeters		Cumahal	Dimensions In Millimeters		
	Min	Max	Symbol	Min	Max	
А	4.70	5.10	С	1.35	1.75	
В	3.70	4.10	а	0.35	0.49	
L	6.00 6.40		R	0.30	0.60	
E	1.27 BSC		Р	0°	7°	
K	0.12	0.22	b	0.40	1.25	
			С	0.203	0.243	


Note:

- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.



TAPE AND REEL INFORMATION

TAPE DIMENSIONS: SOP8

REEL DIMENSIONS: SOP8

Unit: mm

Α	В	С	D	E	F	T1
Ø 330±1	12.7±0.5	16.5±0.3	Ø 99.5±0.5	Ø 13.6±0.2	2.8±0.2	1.9±0.2

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.

TMÍ SUNTO

www.toll-semi.com