

Lonten N-channel 120V, 335A, 2.2m Power MOSFET

BMS

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	120	V
Continuous drain current ¹⁾ $(T_c = 25^{\circ}C$, Silicon limit)		335	А
$(T_c = 25^{\circ}C, Package limit)$	I _D	372	А
$(T_c = 100^{\circ}C, Silicon limit)$		212	А
Pulsed drain current ²⁾	I _{DM}	1340	А
Gate-Source voltage	V _{GS}	±20	V
Avalanche energy 3)	E _{AS}	1521	mJ
Power Dissipation	P _D	481	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	0.26	°C/W
Thermal Resistance, Junction-to-Ambient, minimal footprint ⁴⁾	R _{0JA}	62	°C/W
Soldering temperature, wave soldering only allowed at leads. (1.6mm from case for 10s)	T _{sold}	260	°C

LSGT12R022

Package Marking and Ordering Information

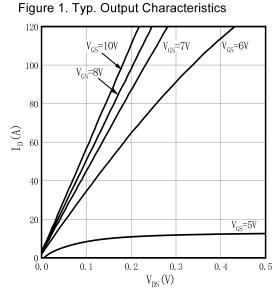
Device	Device Package	Marking	Units/Reel	
LSGT12R022	TOLL	LSGT12R022	2000	

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Static characteristics							
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	120			V	
Gate threshold voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	2.5	3.4	4.5	V	
		V_{DS} =120V, V_{GS} =0V, T_{J} = 25°C			1	μA	
Drain-source leakage current	I _{DSS}	V _{DS} =120V, V _{GS} =0V, T _J = 150°C			100	μA	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20V, V _{DS} =0V			100	nA	
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20V, V _{DS} =0V			-100	nA	
Drain course on state resistance	D	V_{GS} =10V, I_{D} =50 A, T_{J} = 25°C		1.75	2.2		
Drain-source on-state resistance	R _{DS(on)}	T _J = 150°C		3.34		mΩ	
Forward transconductance	g _{fs}	V_{DS} =20V , I_{D} =50A		127.7		S	
Dynamic characteristics							
Input capacitance	C _{iss}			10066			
Output capacitance	Coss	$V_{DS} = 60V, V_{GS} = 0V,$		3288		pF	
Reverse transfer capacitance	C _{rss}	f = 100kHz		50			
Turn-on delay time	t _{d(on)}			116.2		- ns	
Rise time	tr	$V_{DD} = 60V, V_{GS} = 10V,$ $I_{D} = 50A, Rg = 10\Omega$		145.3			
Turn-off delay time	t _{d(off)}			108.7			
Fall time	t _f	-		43.2			
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.99		Ω	
Gate charge characteristics							
Gate to source charge	Q _{gs}			53.4			
Gate to drain charge	Q _{gd}	V_{DS} =60V, I _D =50A,		27.5		nC	
Gate charge total	Qg	V _{GS} = 10V		140.4			
Gate plateau voltage	V _{plateau}			5.5		V	
Output Charge	Q _{oss}	V _{DS} =120V,V _{GS} = 0V		421		nC	
Drain-Source diode characteri	stics and Maxi	mum Ratings					
Continuous Source Current	Is				335	А	
Pulsed Source Current	I _{SM}				1340	А	
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =50A, T _J =25℃			1.1	V	
Peak reverse recovery current	Irrm			3.87		А	
Reverse Recovery Time	t _{rr}	I _s =50A, di/dt=100A/us, T _J =25℃		93.3		ns	
Reverse Recovery Charge	Q _{rr}	1		228.7		nC	

Notes:

1. Limited by maximum junction temperature and duty cycle.


2. Repetitive Rating: Pulse width limited by maximum junction temperature.

3. V_{DD} =50V, V_{GS} =10V, L=0.5mH, I_{AS}=78A, Starting T_J=25°C.

4. The value of RthJA is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

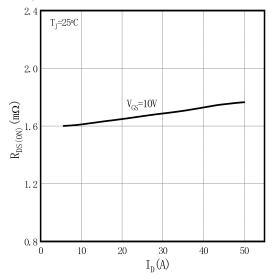
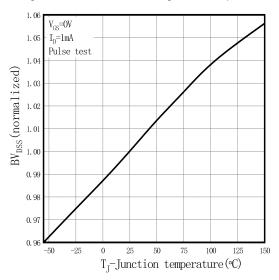



Figure 5.Breakdown Voltage vs.Temperature

Figure 2. Transfer Characteristics

Figure 4.On-Resistance vs.Temperature

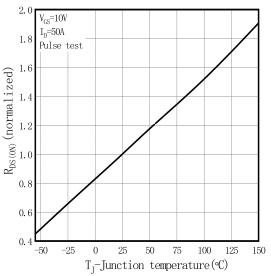


Figure 6.Threshold Voltage vs.Temperature

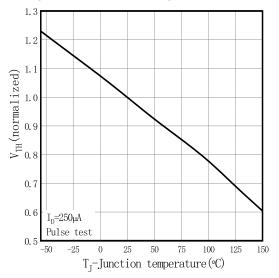


Figure 7.Rds(on) vs. Gate Voltage

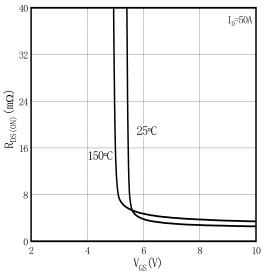
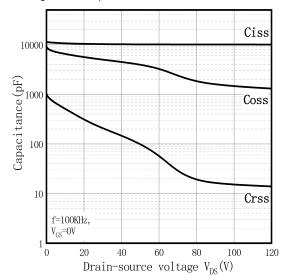
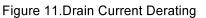
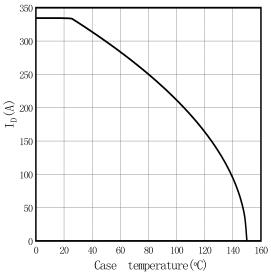





Figure 9.Capacitance Characteristics

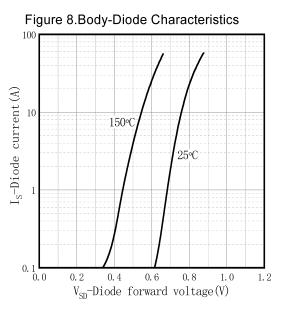
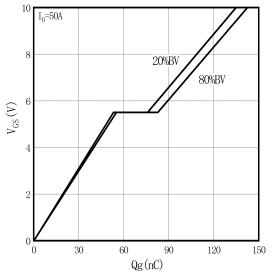
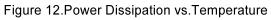
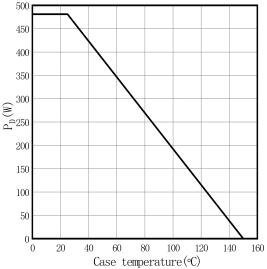





Figure 10.Gate Charge Characteristics

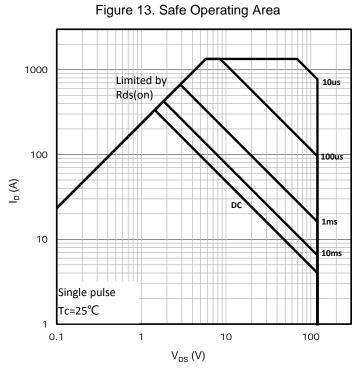
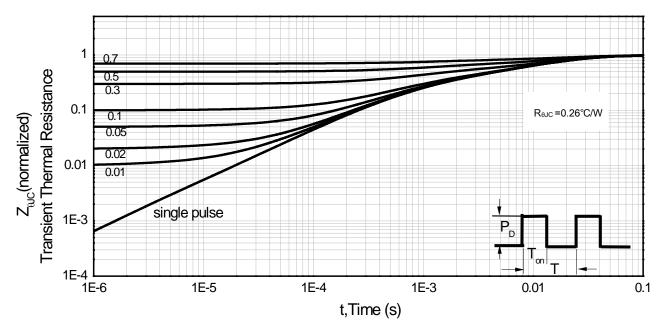
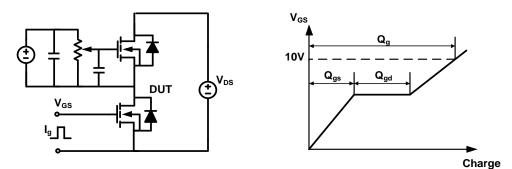
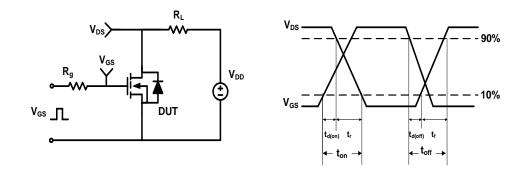
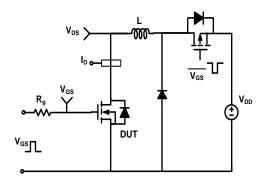
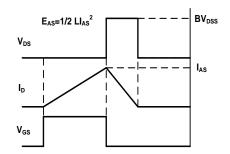




Figure 14. Normalized Maximum Transient Thermal Impedance (RthJC)

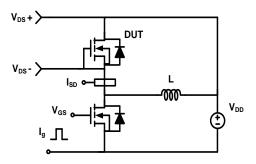


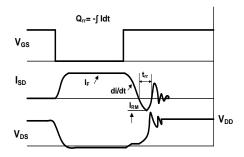
LOVTEN 龙腾 Test Circuit & Waveforms


Gate Charge Test Circuit & Waveform

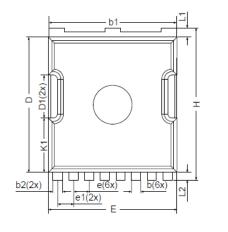


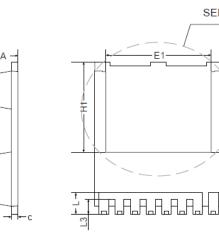
Resistive Switching Test Circuit & Waveform

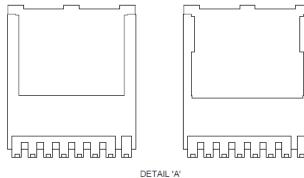



Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform






SEE DETAIL 'A'

1 \mathbf{x}

Mechanical Dimensions for TOLL

Α

Ł

ţ

SCALE: 1/1

	MILLIMETERS		INCHES	
SYMBOLS	MIN	MAX	MIN	MAX
А	2.15	2.45	0.085	0.096
b	0.60	0.90	0.024	0.035
b1	9.65	9.95	0.380	0.392
b2	0.65	0.90	0.026	0.035
с	0.40	0.60	0.016	0.024
D	10.18	10.58	0.401	0.417
D1	3.15	3.45	0.124	0.136
E	9.70	10.10	0.382	0.398
E1	7.90	8.40	0.311	0.331
е	1.10	1.30	0.043	0.051
e1	1.10	1.30	0.043	0.051
Н	11.48	11.88	0.452	0.468
H1	6.75	7.30	0.266	0.287
К	2.45	3.33	0.096	0.131
K1	4.03	4.33	0.159	0.170
L	1.50	2.10	0.059	0.083
L1	0.50	0.90	0.020	0.035
L2	0.45	0.75	0.018	0.030
L3	1.00	1.30	0.039	0.051
θ	10° REF		10° REF	

Revision History

LSGT12R022 Revision 1.0

Disclaimer

The content specified herein is for the purpose of introducing LONTEN's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

LONTEN does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LONTEN shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although LONTEN endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a LONTEN product.

The content specified herein is subject to change for improvement without notice. When using a LONTEN product, be sure to obtain the latest specifications.