

Lonten N-channel 40V, 356A, 0.76 mΩ Power MOSFET

Description	Product Summary	
These N-Channel enhancement mode power field effect transistors are using shielded gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.	V_{DSS}	40V
	$R_{DS(on),typ}$ @ $V_{GS}=10V$	0.76m Ω
	I_D , Silicon	356A
Pin Configuration		

Absolute Maximum Ratings $T_C = 25^\circ\text{C}$ unless otherwise noted

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.63	°C/W
Thermal Resistance, Junction-to-Ambient, minimal footprint ⁴⁾	$R_{\theta JA}$	62	°C/W
Soldering temperature, wave soldering only allowed at leads. (1.6mm from case for 10s)	T_{sold}	260	°C

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Reel
LSGT04R009H	TOLL	LSGT04R009H	2000

Electrical Characteristics
 $T_J = 25^\circ\text{C}$ unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV_{DSS}	$\text{V}_{\text{GS}}=0\text{ V}, \text{I}_D=250\text{uA}$	40	---	---	V
Gate threshold voltage	$\text{V}_{\text{GS(th)}}$	$\text{V}_{\text{DS}}=\text{V}_{\text{GS}}, \text{I}_D=250\text{uA}$	2	---	4	V
Drain-source leakage current	I_{DSS}	$\text{V}_{\text{DS}}=40\text{V}, \text{V}_{\text{GS}}=0\text{V}, \text{T}_J = 25^\circ\text{C}$	---	---	1	μA
		$\text{V}_{\text{DS}}=40\text{V}, \text{V}_{\text{GS}}=0\text{V}, \text{T}_J = 150^\circ\text{C}$	---	---	100	μA
Gate leakage current, Forward	I_{GSSF}	$\text{V}_{\text{GS}}=20\text{ V}, \text{V}_{\text{DS}}=0\text{ V}$	---	---	100	nA
Gate leakage current, Reverse	I_{GSSR}	$\text{V}_{\text{GS}}=-20\text{V}, \text{V}_{\text{DS}}=0\text{ V}$	---	---	-100	nA
Drain-source on-state resistance	$\text{R}_{\text{DS(on)}}$	$\text{V}_{\text{GS}}=10\text{V}, \text{I}_D=50\text{ A}, \text{T}_J = 25^\circ\text{C}$	---	0.76	0.98	$\text{m}\Omega$
		$\text{T}_J = 150^\circ\text{C}$	---	1.21	---	
Forward transconductance	g_{fs}	$\text{V}_{\text{DS}} =20\text{V} , \text{I}_D=50\text{A}$	---	123.2	---	S
Dynamic characteristics						
Input capacitance	C_{iss}	$\text{V}_{\text{DS}} =20\text{V}, \text{V}_{\text{GS}} = 0\text{V},$ $f = 100\text{kHz}$	---	7527	---	pF
Output capacitance	C_{oss}		---	3056.5	---	
Reverse transfer capacitance	C_{rss}		---	162.3	---	
Turn-on delay time	$\text{t}_{\text{d(on)}}$	$\text{V}_{\text{DD}} = 20\text{V}, \text{V}_{\text{GS}}=10\text{V},$ $\text{I}_D = 50\text{A}, \text{R}_g = 10\Omega$	---	96.1	---	ns
Rise time	t_r		---	221.4	---	
Turn-off delay time	$\text{t}_{\text{d(off)}}$		---	116.3	---	
Fall time	t_f		---	46.3	---	
Gate resistance	R_g	$\text{V}_{\text{GS}}=0\text{V}, \text{V}_{\text{DS}}=0\text{V}, f=1\text{MHz}$	---	2.9	---	Ω
Gate charge characteristics						
Gate to source charge	Q_{gs}	$\text{V}_{\text{DS}}=20\text{V}, \text{I}_D=50\text{A},$ $\text{V}_{\text{GS}}= 10\text{V}$	---	30.4	---	nC
Gate to drain charge	Q_{gd}		---	14.8	---	
Gate charge total	Q_{g}		---	100.3	---	
Gate plateau voltage	$\text{V}_{\text{plateau}}$		---	3.2	---	V
Output Charge	Q_{oss}	$\text{V}_{\text{DS}}=30\text{V}, \text{V}_{\text{GS}}= 0\text{V}$	---	145	---	nC
Drain-Source diode characteristics and Maximum Ratings						
Continuous Source Current	I_s		---	---	220	A
Pulsed Source Current	I_{SM}		---	---	880	A
Diode Forward Voltage	V_{SD}	$\text{V}_{\text{GS}}=0\text{V}, \text{I}_s=50\text{A}, \text{T}_J=25^\circ\text{C}$	---	---	0.9	V
Peak reverse recovery current	I_{rrm}	$\text{I}_s=50\text{A}, \text{di/dt}=100\text{A/us}, \text{T}_J=25^\circ\text{C}$	---	1.01	---	A
Reverse Recovery Time	t_{rr}		---	40.6	---	ns
Reverse Recovery Charge	Q_{rr}		---	25	---	nC

Notes:

1. Limited by maximum junction temperature and duty cycle.
2. Repetitive Rating: Pulse width limited by maximum junction temperature.
3. $\text{V}_{\text{DD}}=30\text{V}, \text{V}_{\text{GS}}=10\text{V}, \text{L}=0.5\text{mH}, \text{I}_{\text{AS}}=62\text{A}$, Starting $\text{T}_J=25^\circ\text{C}$.
4. The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

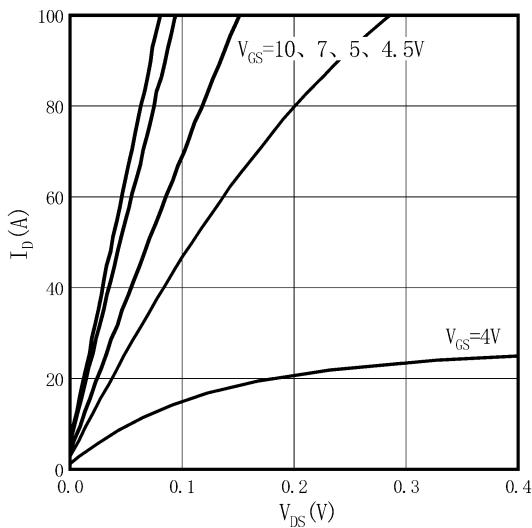


Figure 3. On-Resistance vs. Drain Current

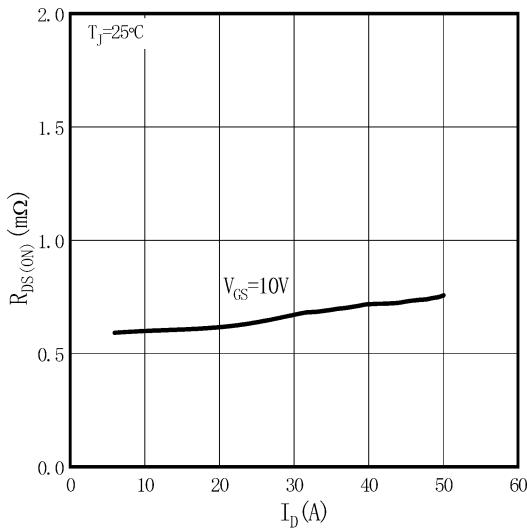


Figure 5. Breakdown Voltage vs. Temperature

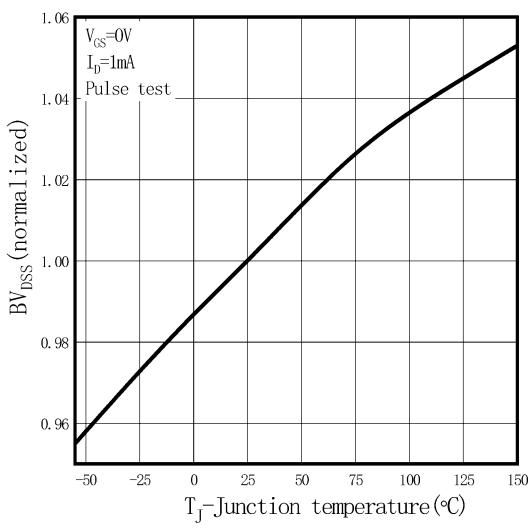


Figure 2. Transfer Characteristics

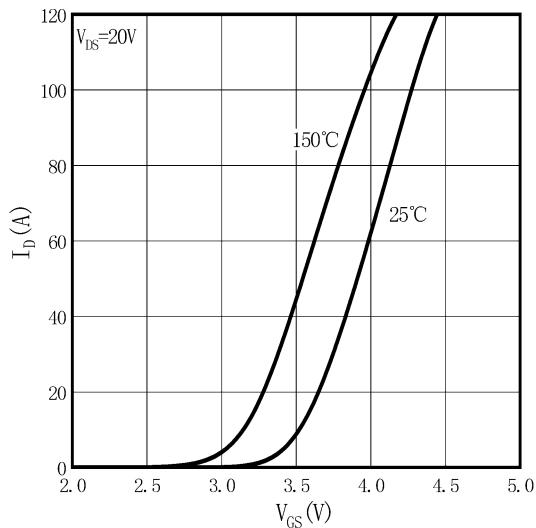


Figure 4. On-Resistance vs. Temperature

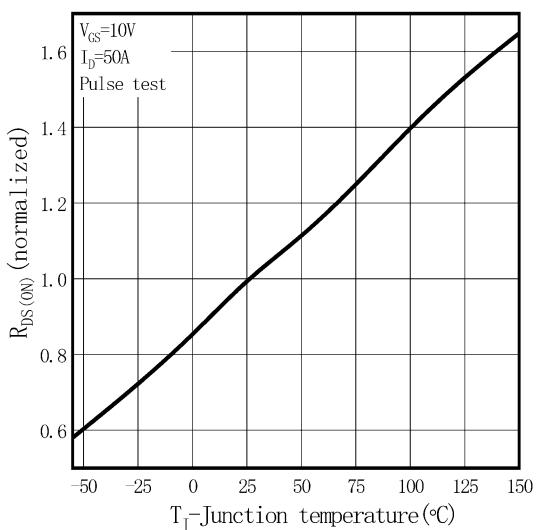


Figure 6. Threshold Voltage vs. Temperature

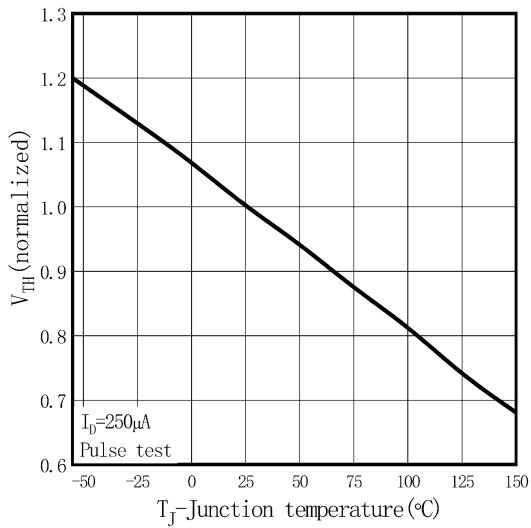


Figure 7.Rds(on) vs. Gate Voltage

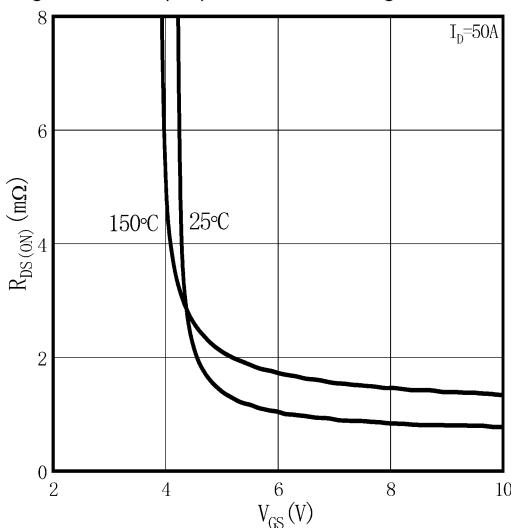


Figure 9.Capacitance Characteristics

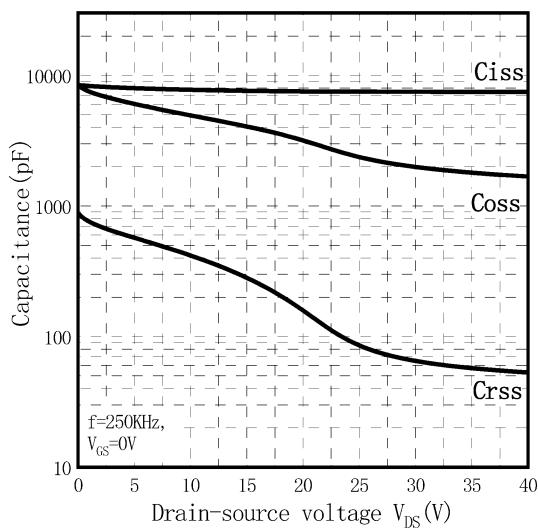


Figure 11.Drain Current Derating

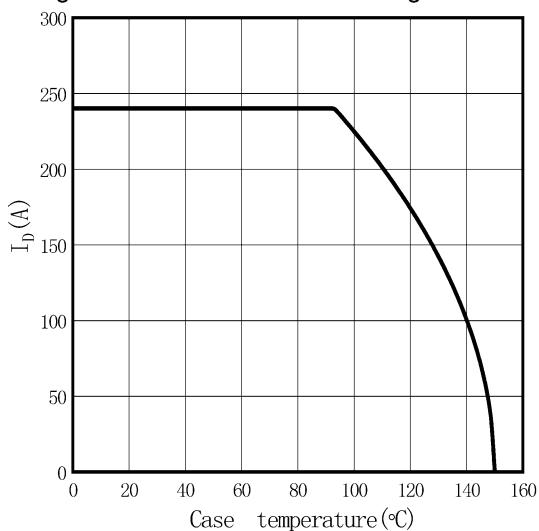


Figure 8.Body-Diode Characteristics

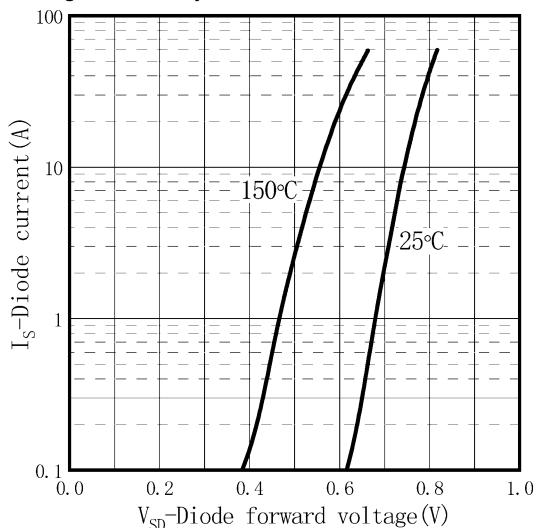


Figure 10.Gate Charge Characteristics



Figure 12.Power Dissipation vs.Temperature

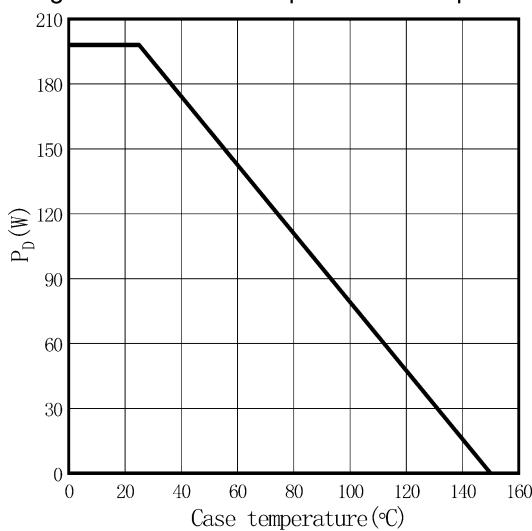


Figure 13. Safe Operating Area

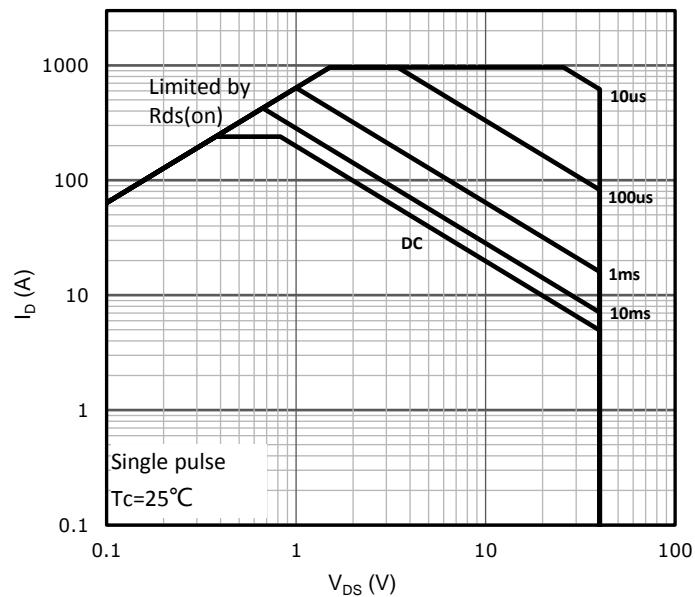
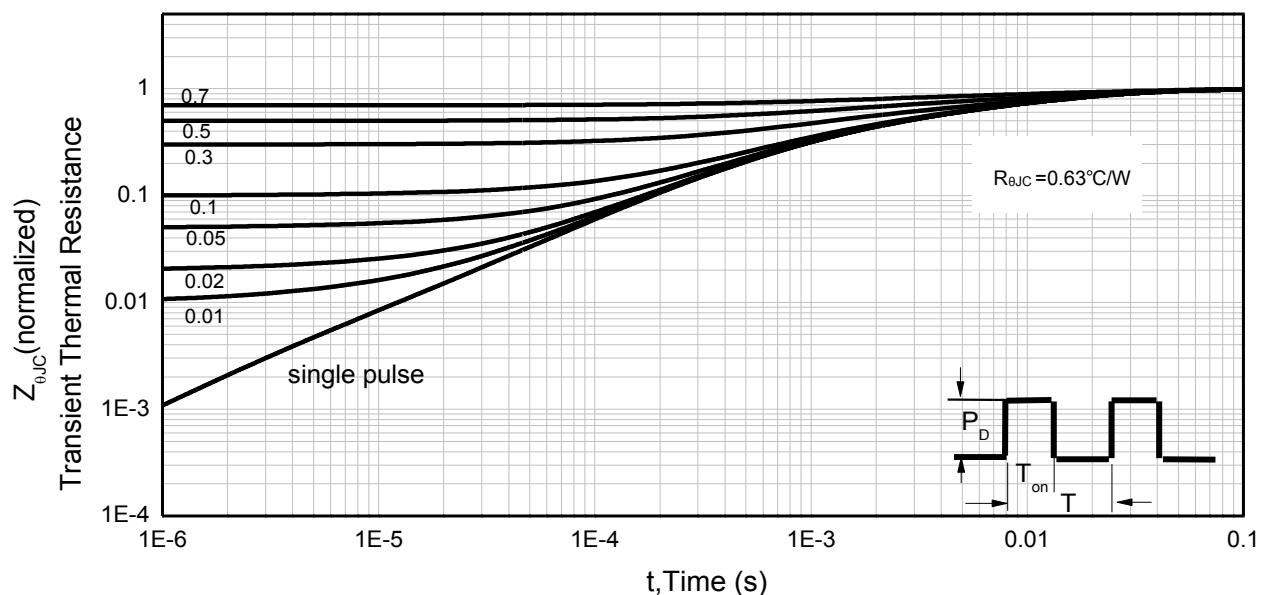
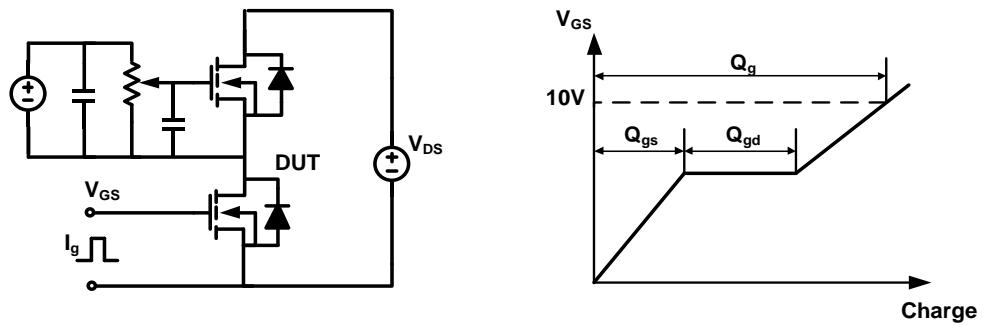
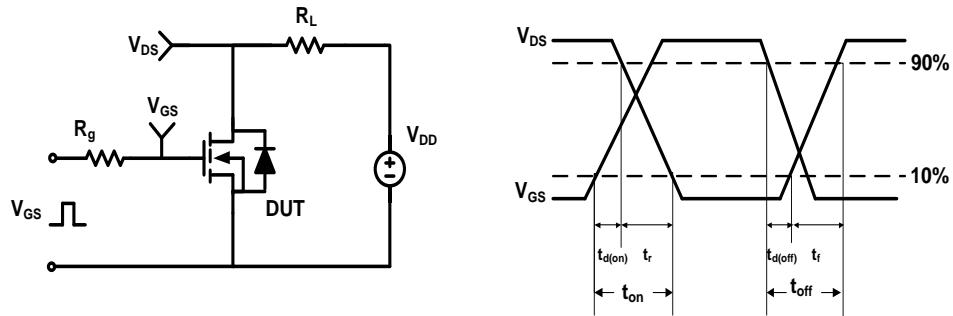
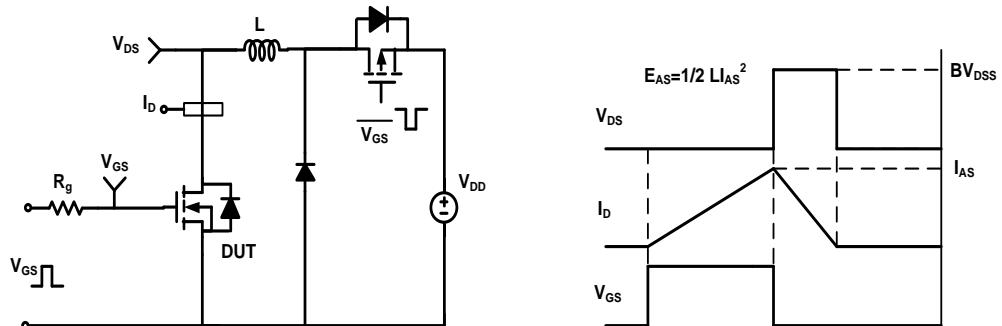
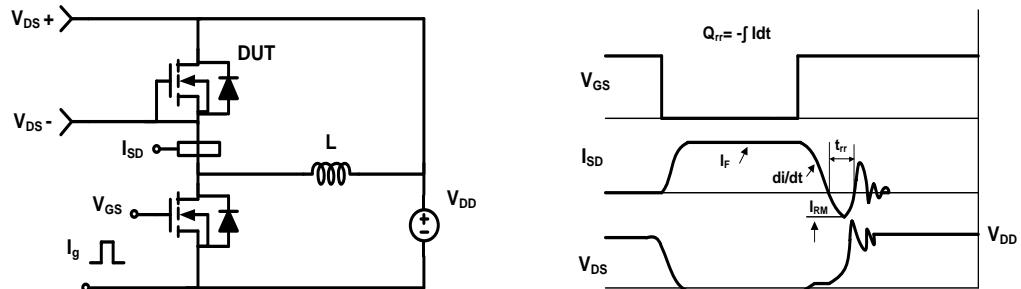




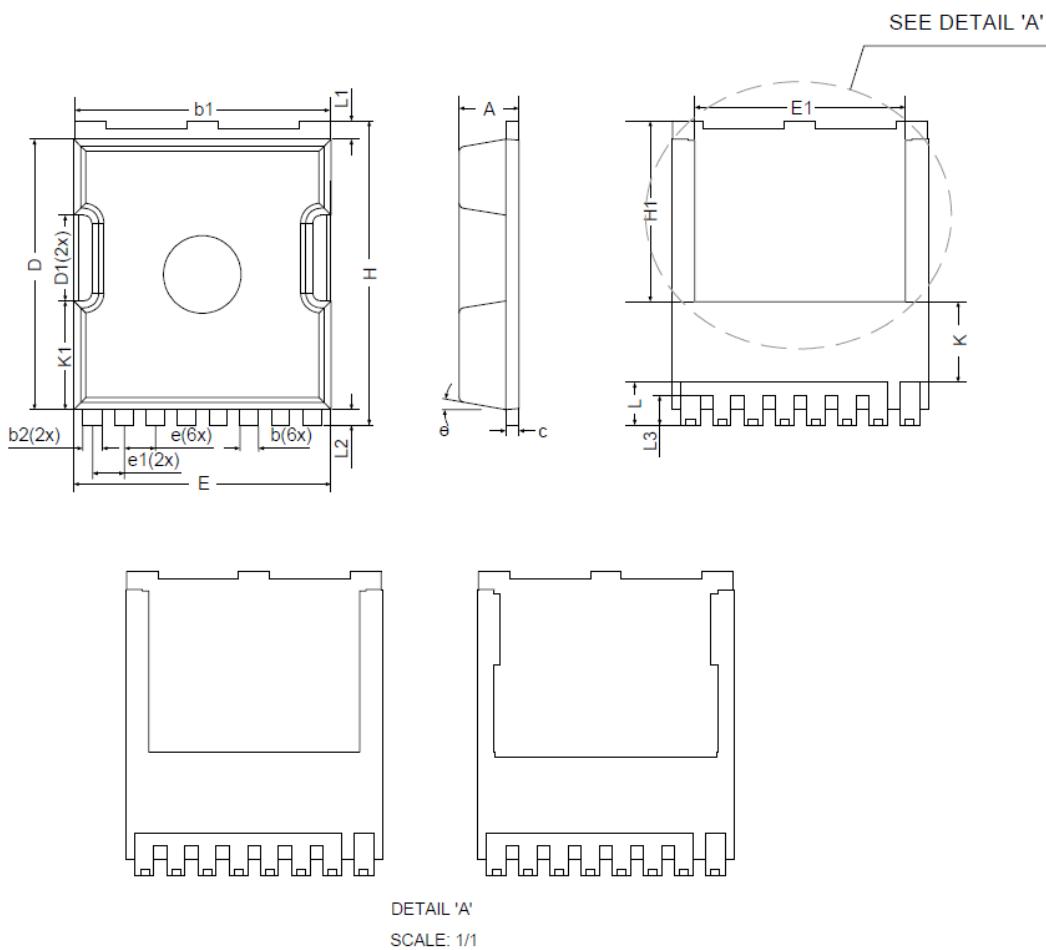
Figure 14. Normalized Maximum Transient Thermal Impedance (R_{thJC})



Test Circuit & Waveforms


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveform


Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform

Mechanical Dimensions for TOLL

SYMBOLS	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	2.15	2.45	0.085	0.096
b	0.60	0.90	0.024	0.035
b1	9.65	9.95	0.380	0.392
b2	0.65	0.90	0.026	0.035
c	0.40	0.60	0.016	0.024
D	10.18	10.58	0.401	0.417
D1	3.15	3.45	0.124	0.136
E	9.70	10.10	0.382	0.398
E1	7.90	8.40	0.311	0.331
e	1.10	1.30	0.043	0.051
e1	1.10	1.30	0.043	0.051
H	11.48	11.88	0.452	0.468
H1	6.75	7.30	0.266	0.287
K	2.45	3.33	0.096	0.131
K1	4.03	4.33	0.159	0.170
L	1.50	2.10	0.059	0.083
L1	0.50	0.90	0.020	0.035
L2	0.45	0.75	0.018	0.030
L3	1.00	1.30	0.039	0.051
θ	10° REF		10° REF	

Revision History

LSGT04R009H

Revision 1.0

Disclaimer

The content specified herein is for the purpose of introducing LONTEN's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

LONTEN does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LONTEN shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although LONTEN endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a LONTEN product.

The content specified herein is subject to change for improvement without notice. When using a LONTEN product, be sure to obtain the latest specifications.